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1. INTRODUCTION

Let the function f be contained in C[a, b], and let Po denote the set of
polynomials of degree no greater than n, with real coefficients. For every
nonnegative integer n there exists a unique polynomial in Po , p~ , such that

Il}a~ If(x) - p(x)! > Il}ax If(x) - p:(x)! ~= En(f)
a~x~b a~x~b

for all polynomials p, other than p~ , in Po. We call P: the best uniform
polynomial approximation of degree n to f on [a, b]. We can characterize P~
via the following theorem.

CHEBYSHEV ALTERNATION THEOREM. Letfbe in C[a, b]. Let the polynomial
p be in Pn , and €(x) = f(x) - p(x). Thenp is the best uniform approximation
p~ to f on [a, b] if and only if there exist at least n + 2 points Xl'"'' Xn+2
in [a, b], Xi < Xi+!, for which I €(Xi) I = maxa<x<~ I f(x) - p(x)l, with
€(Xi+l) = -€(Xi)'

Without loss of generality, we can restrict ourselves to the interval [-1, +1].
In this paper we will be concerned with certain functions for which P~

can be determined explicitly.
In 1936, Bernstein showed (see Golomb [4]) that if

00

f(x) = L akTix),
k=O

with ak ;?: 0, and Tk(x) = cos ke, X = cos e, then

n

p:;'(x) = L akTk(x)
k~O

* This work was performed while the author was at the Department of Applied Mathe­
matics, State University of New York at Stony Brook.
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for all n, if and only if the ratio ki+ljk i of the indices of two successive
nonvanishing coefficients ak ,ak is an odd integer qi for each i. The

I l+l

appealing aspect of Bernstein's result is that the best uniform polynomial
approximation is merely a truncation of the series giving the function.
However, the class of functions of this form is small.

In 1962, Rivlin [9], extending results given by Hornecker [5], considered
the class of functions given by

f( ) = ~ jT. ( ) = Tb(x) - tT'b_al(X)
x L. t aHb X 1 + t2 _ 2tT (x) ,

J~O a
(1)

a > 0, b ?: 0, a and b integers, -I < t < +I. The best uniform polynomial
approximations for t =1= °are shown to be truncations, with a modification
of the last term in the truncated series (cf. Section 3). The results of Bernstein
and Rivlin were extended to include rational approximation by Lam and
Elliott [8], who consider a series like (1) in which a generalized form of Tk is
used.

Rivlin's investigation suggests the possibility of getting similar results by
replacing the polynomials T k in the series expansion by other polynomial sets.
In Section 2 we examine the rational functions

00

f(x) = L tjUai+b(X),
j~O

where Uk is the Chebyshev polynomial of the second kind of degree k,
Uk(x) = sin(k + I)ejsin e, x = cos e. We find that we must have a = 2,
and then/in closed form is given by Eq. (2) of Section 2, and p~ by

for 2k + b :( n < 2(k + I) + b.
The examination of the error function En = / - p~, for / given by

L tjTaj+band L t i U2i+b leads us to consider in Section 3 a general form for En ,

based on the Chebyshev Alternation Theorem. We show that for any f(x)
in C[-1, +1], we have En = ex cos(ne + rp), where x = cos e, I ex I = Eif),
and the phase angle rp is a continuous function of e, depending on / and n.
We then consider a special form of En which has rp independent of n. In both
Rivlin's and our own cases, En is of this form. We show that if rp is inde­
pendent of n, for n = ak, with a equal to a positive integer and k = 0, 1, 2, ... ,
then/is given by (1), with b = 0, up to multiplicative and additive constant
factors.
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2. ApPROXIMATION BY TRUNCATION

(2)

LEMMA 2.1. Let f(x) = L;:o tiUaHb(X), with a and b nonnegative integers,
a > 0, -1 < t < + 1. Then

f(x) = Ub(X) - tUb_aCx)
1 + t 2 - 2tTa(x) ,

where we let U-I(X) = 0, and Ub_a(x) = -Ua- b- 2(x)for a> b + 1.

Proof See [10], theorem on page 45.
The value t = °gives f(x) = Ub(X), which is also the best approximation

to ffor n ?: b. This trivial case will be excluded in what follows.

THEOREM 2.1. Let f be given as in Lemma 2.1. Let

k

q(x) = L tiUaHb(X) - 0k(t) Ua(k-l)+b(X) - Yk(t) UaHb(X).
i=O

Then we can solve for 0k(t) and Yk(t) such that q is p~ for ak + b ~ n <
a(k + 1) + b, exactly for the case a = 2. When a = 2, we have for k ?: 1

tk+2

Ok(t) = (1 - t)2(1 + t) ;

(t 2 - t - 1) tHI

Yk(t) = (1 - t)2(1 + t)

2 I t Ik+l

En(f) = (1 - t)2(1 + t) •

Proof The error function €(x) = f(x) - q(x) can be found in closed
form from the difference of the two series. Viewing sin(aj + b + 1)0 as
Im(ei1ai+b+I)O), €(x) becomes

e(cos 8) = _._1_ 1m (tk+lei[a(k+l)+b+110 £ (teiaO)i
Sill 0 i=O

+ 0k(t) ei[a(k-I)+b+110 + yit) ei(ak+b+1)O).

Expanding all terms and taking the imaginary parts yields

e(cos 0) = --.-!n {tk+2 sin aO cos[a(k + 1) + b + 1JOjB(O)
Sill 17

+ t k+1(1 - t cos a8) sin[a(k + 1) + b + 1JOjB(O)

+ ?>k(t) sin[a(k - 1) + b + 1]8 + Yk(t) sin(ak + b + 1)8}, (3)
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where B«()) = 1 + t2 - 2t cos a(). The proof depends on the fact that the
error can be put into the following form:

f(COS ()) = cxit) cos[(ak + b + l)() + tjJ]. (4)

Equations (3) and (4) can be expanded to give cos(ak + b + l)() and
sin(ak + b + l)() terms. Since the two expressions for f(COS ()) must be equal,
we can equate the coefficients of cos(ak + b + l)() and sin(ak + b + I)()
to yield the following formal expressions for cos tjJ and sin tjJ:

exk(t) cos tjJ = [t k+! sin a8 - Ok(t) B«()) sin a8l/sin ()B«())
and

-exit) sin tjJ = [t k+1 cos a() - t k+2 + Yk(t) B«())

+ Ok(t) B«()) cos a()l/sin 8B«()).

This procedure is valid only if these expressions for cos tjJ and sin tjJ satisfy
cos2 tjJ + sin2 if; = 1 identically in 8. This condition gives upon simplification

CXk2(t) sin2 ()B(8) = t 2k+2 - 2Yk(t) t"+2

+ [Ok2(t) + Yk2(t)] B«()) + 207,(t) Yk(t) B«()) cos a()

+ 20k(t) tk+1 cos 2a()

+ 2t"+l cos a()[Yk(t) - tok(t)]. (5)

Employing several trigonometric identities, Eq. (5) becomes (suppressing the
arguments of cx" , Ok , Yk)

tcxk2(1 + t 2) - CXk2t cos a() - tCXk2(1 + (2) cos 2()

+ tCXk2t cos(a - 2)() + tcxb cos(a + 2)()

= [t 2k+2 - 2Yktk+2 + (0 10
2 + Yk2)(1 + t2) - 2tOkYk]

+ [-2t(Ok2+ Yk2) + 2t k+1(Yk - tok) + 20"Yk(1 + t2)] cos a()

+ (28ktk+l - 2t8kYk) cos 2a(), (6)

and must hold identically in (). The various arguments of cosine are 08, a(),
2a(), 2e, (a - 2)(), (a + 2)(). If anyone of the last three arguments is not
actually equal to another argument, then its coefficient must be identically
zero, which means t = 0 or CXk = O. But CXk = 0 implies f is a polynomial,
which can only occur in the trivial case t = O.

We check for values of a which permit solutions in the nontrivial case and
find only a = 2. When a = 2, equating coefficients of cosine of 08, 2(), 4()
in (6) yields the three equations

-1tCXk2(1 + t + t 2) = t2k+2 - 2Yktk+2 - 2tOkYk + (0,,2 + y,,2)(1 + t2), (7)

-!cxk2(1 + t)2 = 2t(8,,2 + y,,2) - 2(1 + t2) O"Yk - 2tk+1(Yk - tok), (8)

Icx,,2t = -2to"y" + 2t"+10" . (9)
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The value of ak2 obtained from (9) is next substituted in (8) and (7). We get
two equations from which we can eliminate (8 10 + 1'10)2 to yield 810 + tYk =
-tk+3/(I - t 2). Writing 1'10 in terms of Sk , we find 8lo(t) = [10+2/(1 - t)2(I + t),
and then

and

Evaluating cos 1/J and sin if; gives

./, (I - 2t - t 2) sin 2() + [2 sin 4()cos 'f' = ...o.-:o---;.,.--,~-:--co----::~--=--

2 SIll ()(I + t 2 - 2t cos 2() ,

sin if; = (I + 2t) - (1 + t)2 cos 2() + t 2cos 4()
2 sin ()(I + t 2 - 2t cos 28)

(IOa)

(lOb)

It is possible to analyze Eqs. (IOa,b) to show directly that if; goes from 0 to 11'

as 0varies from 0 to 1'. However, it is far easier to change the expansion of (4)
so that ,,(cos 8) = ait) cos[(ak + b)8 + «() + if;)]. Letting 1> = 8 + 0/,
cos 1> and sin 1> are given by

(I - t 2) sin a()
sin 1> = ~-'--~---'-:::-----;c­

I + t2 - 2t cos a8 '

-2t + (I + t 2
) cos a8cos 1> = _,.------,o:-----~---"----~

1 + t2 - 2t cos aO

(Ila)

(I I b)

These functions appear in Rivlin [9], and it is known that as () increases from
oto 11', 1> increases continuously from 0 to al'. The argument (2k + b)() + 1>
increases continuously from 0 to [2(k + I) + b]1I' as () increases from 0 to 11',

so the error takes its extreme values ± I ak(t)/ with alternating sign at the
2(k + 1) + b + 1 points in °~ () :(; l' at which cos[(2k + b)() + 1>] will be
±1. Invoking the Chebyshev Alternation Theorem, q(x) is p~(x), with
En(f) = jll:,,(t)I, for 2k + b :(; n < 2(k + I) + b, k ~ 1. Q.E.D.

It is interesting to note that if we allow even greater variation of the two
modifying terms, as by taking

10
q(x) = L tiUaHb(X) - Olo(t) Ua(k-a)+b(X) - Yk(t) Ua(k-p)+b(X),

i=O

o ~ a < p ~ k, then no set of values other than a = I, p = 0, a = 2
admits a nontrivial solution.

Rename the function given in (2) asf(U, a, b) and the function given in (I)
as f(T, a, b). One can show that feU, 2, b) differs from f(T, a, b) in the
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following sense. For bi > 2 there are no values of a, b2 , ct, and f3 such
that f(U, 2, bl ) = ctf(T, a, b2) + f3 for all values of t.

The Chebyshev Alternation Theorem implies the following lemma.

LEMMA 2.2. If pt is the best uniform approximation in Pn to f6 era, bJ,
then for arbitrary real numbers a and ~, ap~ + ~ is the best uniform approxi­
mation in Pn to al + ~ on [a, b], and En( al+ m= I ct I En( f).

This gives an obvious extension to Theorem 2.1, analogous to the corollary
in [9].

3. A UNIQUENESS RESULT

According to the Chebyshev Alternation Theorem, f(x) - p~(x) takes its
extreme values ±a, I ex \ = Eif), with alternating signs at least n+ 2 times
in [a, b]. When [a, b] = [-1, +1], this corresponds to extrema of En =
f(cos 8) - pt(cos 8) in 0 ::::;; 8 ::::;; 7T. The error E can always be described as
ex cos(ne + ep). The function ep gives the phase of the error. That is, it
describes the behavior ofI - p~ as a variation in the argument of the cosine
function. The choice of ep depends on f and n. By choosing ep(O) to be in
[0, 27T), and considering ei </>(8) to be on the Riemann surface corresponding to
eO, we see that ep(B) varies continuously as Bgoes from °to 7T. The argument
nB + ep will have a range including the closed interval with endpoints at <{>(O)
and n7T + ep(7T). The range must provide as many extrema of cosine as
required for I - p~ .

For the functionsf(T, a, b) andf(U, 2, b) we have En = akcos[(ak+b)()+ep],
for ak + b ::::;; n < a(k + 1) + b, in both cases. Here we see that ep is a
continuous function of e, but it is independent of the choice of k. In fact,
we may include the b() term in ep' = b() + ep, and ep' is still independent of n.
We shall determine all functions whose error of approximation contains
such a "constant phase" for all n ?o 0. The following lemmas are required.

LEMMA 3.1. Let IE C[-1, +1] be such that P:k satisfies f (cos 8) ­
P~k(COS B) = Cik cos(akB + ep) for k ?o 0, where a is a positive integer and ep
is a continuous function of 8, independent of k. Let al and ct2 be nonzero. Let
cos ep and sin ep be even and oddfunctions ofB, respectively. Thenfis a rational
function, and the degree of the numerator is no greater than the degree of the
denominator.

Proof Writing u(O) = cos ep, v(O) = sin rf>, we can express these functions
as formal Fourier series,

00

u(O) = L an cos nO
n~O

and v(O) = L bn sin nO.
n=l
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P:k(COS 0) = f(cos 0) - !Y.k cos akOu(O) + !Y.k sin akOv(O)

and k = 0 gives

f(cos 0) = !Y.ou(O) + P:, (12)

we can express ptk , for k ? 1, as a Fourier cosine series whose coefficients
involve only the an's and bn's. The coefficients of cos nO for n > ak must be
zero in this series. It follows that

for n > ak (for each fixed k ? 1). Multiplying (13) by xn and summing for
n ? ak + 1 (for k fixed), we have

[2!y'ox ak - !Y.k(l + X2ak)] U(x) + !Y.k(1 - X2ak) V(x)

ak 2ak 2ak
= 2!Y. x ak " a xn -!Y. "a xn - !Y. a X2ak +!Y. "b xn - cx b X2ako t:... n kt:... n kO kt:... n kO,

n~O n~O n=O

where
00

U(x) = I anxn
n~O

and
00

V(x) = I bnxn.
n~l

(14)

Here we may note that the coefficients of U and V in (14) are the character­
istic polynomials of the parts of the linear recurrence relation (13) involving
only the an's and bn's, respectively. Denote these characteristic polynomials
by Uk(X) and vix). Rewrite (14) as

Uk(X) U(x) + vix) V(x) = rix), (15)

and we see that when CXk oF 0, the degrees of Uk and Vk equal 2ak, and the
degree of rk is no greater than 2ak. Take (15) for k = 1 and multiply the
equation by CX2(X2a + 1). From this we subtract (15) taken for k = 2 and
multiplied by CXI • The V(x) term is eliminated, and we have

This tells us U(x) is rational, and consequently, so is V(x). Equation (16) also
gives bounds on the degrees of the numerator and denominator of U(x).
The coefficient of U(x) simplifies to -2CX2Xa(cxox2a - cx1xa + cxo). The right­
hand side of (16) contains xa as a factor, as well. After cancellation of xa,
we find 2a as the upper bound for the degree of the denominator of U(x).
However, if in (15) we write U(x) = p(x)/q(x) and V(x) = s(x)/t(x) and then
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clear fractions, it immediately follows that the degree of p(x) is not greater
than the degree of q(x).

Noting that u«() = Re U(e iB) and v(O) = 1m V(e iB), and letting

a

p(x) = I PiXi ,
j~O

~

q(x) = I qiXj ,
j=O

then

u () = (2:;-0 Pi cos j()('L.~=o qk cos k() + (~:;~l Pi sinj())('L.i=1 qk sin k()

( ) (2:~=0 qk cos k()2 + (~:~~l qk sin k()2

Multiplying the summations and using

and
cosj() cos k() = i cosU - k)() + i cosU + k)(),

sinjO sin kO = ! cosU - k){) - l cosU + k){),
(17)

the highest order terms in the last form of u«() are 2%qr cos TO in the denomi­
nator, and POq7 cos TO (and qo Pa cos aO if a = T) in the numerator.

Since f is given by (12), we note that some terms in its numerator may
cancel, and the lemma is proved. Q.E.D.

Although the proof requires exl and (X2 to be nonzero in order to get a
meaningful expression for (16), iff is a constant, then (Xl = (X2 = 0, but f
still satisfies the statement of the lemma.

LEMMA 3.2. Let Pa be a polynomial of degree a. If

(1 + ex2
) - 2ex cos aO - Pa2(cos 8) = K(l - cos2 a8) (18)

for some constant K ~ 0, then Pa(cos 8) must be of the form Po + Pa cos a8.

Proof Let
a

Pa(cos B) = L Pi cosjB.
j~O

The function Pa2(cos 8) is taken as a trigonometric polynomial by using (17),
and (18) becomes

(
1 a ) 1 2a ( a )

- 2ex + .2 ~o PiPa-i + PoPa cos a() - .2 rJ;.+l ila PiPr-i cos rO

= iK(1 - cos 2aO).
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Equating the coefficients ofcos 2aO yields K = Pa2, and then the cos(2a - 1)0
term gives Pa-IPa = 0, or Pa-l = O. Assuming Pa-i = 0 forj = 1,2,... , w - 1,
then the cos(2a - w)O term gives pa-w = O. By induction, it follows that
Pa-i = 0 for j = 1,2,... , a - 1. Finally, the constant terms give Po2 =
(1 + (X2) - K. Q.E.D.

TIlEOREM 3.1. Let f be in C(-I, + I], and let a be a positive integer.
Assume f(cos e) - pMcos e) = (Xk cos(ake + c/» for k ): 0, where c/> is a
continuous function of8, independent ofk. Assume (Xl and (X2 are nonzero. Then
f is a rational function of the form f(T, a, 0), up to multiplicative and additive
constant factors.

Remarks. Ifwe were to assume that the phase angle c/> satisfies c/>(O) = m1T,
c/>(1T) = (a + m)1T for some integer m, then we are assured of a sufficient
number of alternations of the error to have P:k = p~ for ak ::::;; n < a(k + I).
This also forces the error of approximation to have extrema at both endpoints
of the interval. The error form is assumed for k ): 0 in order to start with pt.
Lemma 2.2 tells us that iffhas this form for the error of approximation, then
so does (Xf + {3, for any real (X and (3.

Proof We first derive a formula for f(cos 8) in terms of pt(cos 8) and
trigonometric functions. Letting k = 0, we have f(cos 8) - pt = (xo cos c/>.
By Lemma 2.2, we can let (xo = I and pt = 0 since choosing particular
values of (xo and pt is equivalent to modifying/by multiplicative and additive
constant factors. Now taking k = I, we have

f(cos e) - p:(cos 8) = (XI(COS ae cos c/> - sin a8 sin c/». (19)

Substituting cos c/> = f(cos 8) and solving (19) for sin c/> yields

sin c/> = «(Xl COS aB - l)f(~os B) + p:(cos B)
(Xl sm aB

Calculating cos2 c/> + sin2 c/> = 1 gives a quadratic equation in f(cos e).
Solving for f and simplifying gives

f( B) _ (I - (Xl cos ae) p:(cos e) ± [gicos 8)]1/2 (20)
cos - (1 + (X12) - 2(XI cos aB '

where gicos B) = (X12 sin2 ae[(1 + (X12) - 2(XI cos a8 - pt2(cos 8)]. From
Eq. (20) it follows that f is an even function in e, implying that as functions
of 8, cos c/> is even and sin c/> is odd. By Lemma 3.1, f(cos 8) is a rational
function.

Next we determine P: explicitly. Since f is rational, the function ga(cos 8)
must be the perfect square of a polynomial with real coefficients. The term
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ex} sin2 aO = CX12(1 - cos2 aO) = tcxl(l - cos 2aO) has only simple zeros,
so it has no perfect square factors. Therefore, (1 - cos2 aO) must be a factor
of

(21)

Since these two terms have the same degree, they can differ only by a multi­
plicative constant. Applying Lemma 3.2, we have p:(cos 0) = fL + v cos aO,
with fL2 + v2 = 1 + CX12. The coefficient of cos aO must be zero in (21), so
CXl = -fLY. It follows that (fL - V)2 = (1 + cxl )2 and (fL + V)2 = (1 - CXJ2.

Therefore,

and
fL + v = ±(1 - cxJ.

(22a)

(22b)

The four sets of equations arising from (22a,b) lead to the following two
solutions of p:(cos 0) and their negatives:

1 - CXl cos aO,

-al + cos aO.

(23a)

(23b)

We now substitute for p: and ga in Eq. (20) to solve forf(cos 8). In view of
Lemma 2.2, we need consider only the four solutions of/arising from (23a,b)
and can neglect the negatives of these 1's, which arise from the other choices
ofP:. Equation (23a) gives

and

f(cos 8) = +1 (24a)

(24b)

while (23b) gives

and

f(cos 0) = +cos aO.

(24c)

(24d)

Equations (24a,d) are not admissible solutions since they do not have CXl

and a2 both nonzero, and were excluded initially.
By Lemma 3.1, we know that the degree of the numerator is not greater

than the degree of the denominator off, so (24b) is not an admissible solution.
We need now show that (24c) satisfies the statement of the theorem.
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Rivlin showed that/(T, a, 0) - ptk = (tk+l((l - t 2» cos(akB + c/», where

for ak ~ n < a(k + 1), k? 0,

and 1> is given by (11). This gives us the desired result for f(T, a, 0).
We may note that our assumption on the error form implies that if

Eak(]) =1= 0, then Ea(k+l)(f) < Eak(f), because the approximation will change
for k + 1. Since Eail) = I (Xk I and (xo = 1, it follows that -1 < (Xl < +1.
Thenf(cos B) in (24c) is the same as cos c/> in Eq. (lIb). It is easy to check
that cos c/> = cxf(T, a, 0) + (3, where (X = (l - t 2)(t and (3 = -I(t. From
Rivlin's result and Lemma 2.2, we know that (Xf(T, a, 0) + (3 for any real (X

and (3 will have an error of approximation of the form (Xk cos(akB + c/» for
k ? 0, with c/> independent of k. So f(T, a, 0) is the only function which
satisfies the theorem, up to the choice of (X and (3. Q.E.D.
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